易教网-重庆家教
当前城市:重庆 [切换其它城市] 
cq.eduease.com 家教热线请家教热线:400-6789-353 010-64436939

易教网微信版微信版 APP下载
易教播报

欢迎您光临易教网,感谢大家一直以来对易教网重庆家教的大力支持和关注!我们将竭诚为您提供更优质便捷的服务,打造重庆地区请家教,做家教,找家教的专业平台,敬请致电:400-6789-353

当前位置:家教网首页 > 重庆家教网 > 教学资源 > 常用高中数学公式

常用高中数学公式

【来源:易教网 更新时间:2013-07-11

积的关系:  sinα=tanα×cosα  cosα=cotα×sinα  tanα=sinα×secα  cotα=cosα×cscα  secα=tanα×cscα  cscα=secα×cotα 

·倒数关系:  tanα ·cotα=1  sinα ·cscα=1  cosα ·secα=1 

 商的关系:   sinα/cosα=tanα=secα/cscα  cosα/sinα=cotα=cscα/secα  直角三角形ABC中,   角A的正弦值就等于角A的对边比斜边,  余弦等于角A的邻边比斜边  正切等于对边比邻边,  ·[1]三角函数恒等变形公式  ·两角和与差的三角函数:  cos(α+β)=cosα·cosβ-sinα·sinβ  cos(α-β)=cosα·cosβ+sinα·sinβ  sin(α±β)=sinα·cosβ±cosα·sinβ  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 

·三角和的三角函数:   sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 

·辅助角公式:   Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中  sint=B/(A²+B²)^(1/2)  cost=A/(A²+B²)^(1/2)  tant=B/A   Asinα-Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B 

·倍角公式:   sin(2α)=2sinα·cosα=2/(tanα+cotα)   cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)  tan(2α)=2tanα/[1-tan²(α)] 

半角公式:   sin(α/2)=±√((1-cosα)/2)  cos(α/2)=±√((1+cosα)/2)   tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα 

 ·降幂公式   sin²(α)=(1-cos(2α))/2=versin(2α)/2  cos²(α)=(1+cos(2α))/2=covers(2α)/2  tan²(α)=(1-cos(2α))/(1+cos(2α)) 

·万能公式:   sinα=2tan(α/2)/[1+tan²(α/2)]  cosα=[1-tan²(α/2)]/[1+tan²(α/2)]  tanα=2tan(α/2)/[1-tan²(α/2)] 

·积化和差公式:   sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]  cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]  cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]  sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 

·和差化积公式:   sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 

 ·推导公式   tanα+cotα=2/sin2α  tanα-cotα=-2cot2α  1+cos2α=2cos²α  1-cos2α=2sin²α  1+sinα=(sinα/2+cosα/2)²  ·其他:   sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及  sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0   cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx  证明:   左边=2sinx(cosx+cos2x+...+cosnx)/2sinx   =[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)  =[sin(n+1)x+sinnx-sinx]/2sinx=右边  等式得证   sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx  证明左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)   =[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)  =- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边  等式得证  诱导公式 

公式一:   设α为任意角,终边相同的角的同一三角函数的值相等:  sin(2kπ+α)=sinα  cos(2kπ+α)=cosα  tan(2kπ+α)=tanα  cot(2kπ+α)=cotα 

公式二:   设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:  sin(π+α)=-sinα  cos(π+α)=-cosα  tan(π+α)=tanα  cot(π+α)=cotα 

 公式三:   任意角α与 -α的三角函数值之间的关系:  sin(-α)=-sinα  cos(-α)=cosα  tan(-α)=-tanα  cot(-α)=-cotα 

公式四:   利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:  sin(π-α)=sinα  cos(π-α)=-cosα  tan(π-α)=-tanα  cot(π-α)=-cotα 

 公式五:   利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:  sin(2π-α)=-sinα  cos(2π-α)=cosα  tan(2π-α)=-tanα  cot(2π-α)=-cotα 

公式六:   π/2±α及3π/2±α与α的三角函数值之间的关系:  sin(π/2+α)=cosα  cos(π/2+α)=-sinα  tan(π/2+α)=-cotα  cot(π/2+α)=-tanα  sin(π/2-α)=cosα  cos(π/2-α)=sinα  tan(π/2-α)=cotα   cot(π/2-α)=tanα  sin(3π/2+α)=-cosα  cos(3π/2+α)=sinα  tan(3π/2+α)=-cotα  cot(3π/2+α)=-tanα  sin(3π/2-α)=-cosα  cos(3π/2-α)=-sinα  tan(3π/2-α)=cotα  cot(3π/2-α)=tanα  (以上k∈Z)  

正弦定理是指在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R为外接圆的半径)   余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA   角A的对边于斜边的比叫做角A的正弦,记作sinA,即sinA=角A的对边/斜边  斜边与邻边夹角a  sin=y/r  无论y>x或y≤x   无论a多大多小可以任意大小  正弦的最大值为1 最小值为-1    

三角恒等式    对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC  证明:   已知(A+B)=(π-C)  所以tan(A+B)=tan(π-C)   则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)  整理可得   tanA+tanB+tanC=tanAtanBtanC   类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ 向量计算  设a=(x,y),b=(x',y')。   1、向量的加法   向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。  

  2、向量的减法   如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').   4、数乘向量   实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。  当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。  实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)·b=λ(a·b)=(a·λb)。  向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.  数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。  

 3、向量的的数量积   定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。  定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a·b=x·x'+y·y'。 向量的数量积的运算率 a·b=b·a(交换率);  (a+b)·c=a·c+b·c(分配率); 向量的数量积的性质 a·a=|a|的平方。 a⊥b 〈=〉a·b=0。 |a·b|≤|a|·|b|。  向量的数量积与实数运算的主要不同点  1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。 2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。 3、|a·b|≠|a|·|b|  4、由 |a|=|b| ,推不出 a=b或a=-b。

 

-更多-

最新教员

  1. 邹教员 重庆大学 工科试验班(工程能源类)
  2. 周教员 重庆第二师范 理科
  3. 吴教员 中山大学(广州校区东校园) 材料工程
  4. 卫教员 重庆大学 人文社科(文史哲)
  5. 张教员 西南师范大学 生物育种科学
  6. 杜教员 四川美术学院 艺术教育学院综合艺术
  7. 黄教员 重庆交通大学 英语
  8. 庞教员 四川美术学院 综合艺术
  9. 叶老师 尚无职称等级 英语